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We can also think of the instantaneous power
as the power absorbed by the element at a spe-
cific instant of time. Instantaneous quantities are
denoted by lowercase letters.
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PART 2 AC Circuits

I1.I  INTRODUCTION

Our effort in ac circuit analysis so far has been focused mainly on cal-
culating voltage and current. Our major concern in this chapter is power
analysis.

Power analysis is of paramount importance. Power is the most
important quantity in electric utilities, electronic, and communication
systems, because such systems involve transmission of power from one
point to another. Also, every industrial and household electrical device—
every fan, motor, lamp, pressing iron, TV, personal computer—has a
power rating that indicates how much power the equipment requires;
exceeding the power rating can do permanent damage to an appliance.
The most common form of electric power is 50- or 60-Hz ac power. The
choice of ac over dc allowed high-voltage power transmission from the
power generating plant to the consumer.

We will begin by defining and derivinghstantaneous power and
average power. We will then introduce other power concepts. As practi-
cal applications of these concepts, we will discuss how power is measured
and reconsider how electric utility companies charge their customers.

[1.2 INSTANTANEOUS AND AVERAGE POWER

As mentioned in Chapter 2, thestantaneous power p(¢) absorbed by an
elementis the product of the instantaneous volidgeacross the element
and the instantaneous curréft) through it. Assuming the passive sign
convention,

p(t) = v(@)i() (11.1)

The instantaneous power is the power at any instant of time. Itis the rate
at which an element absorbs energy.

Consider the general case of instantaneous power absorbed by an
arbitrary combination of circuit elements under sinusoidal excitation, as
shown in Fig. 11.1. Let the voltage and current at the terminals of the
circuit be

v(t) =V, cos(wt + 6,) (11.2a)
i(t) = I, cos(wt + 6;) (11.2b)

where V,, and I, arethe amplitudes (or peak values), and 6, and 6; arethe
phase angles of the voltage and current, respectively. The instantaneous
power absorbed by the circuit is

p(t) = v(0)i(t) = V1, cos(wt + 6,) cos(wt + 6;) (11.3)
We apply the trigonometric identity

COSA COSB = % [cos(A — B) + cos(A + B)] (11.4)
and express Eq. (11.3) as

1 1
p) = > Viu I, COS(6, — 6;) + > Vi I, COSQwt 4 0, + 6;)  (11.5)
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CHAPTER I1 AC Power Analysis

This shows usthat the instantaneous power hastwo parts. Thefirst partis
constant or time independent. Its value depends on the phase difference
between the voltage and the current. The second part is a sinusoidal
function whose frequency is 2w, which is twice the angular frequency of
the voltage or current.

A sketch of p(¢) in Eq. (11.5) is shown in Fig. 11.2, where T =
27 /w isthe period of voltage or current. We observethat p(¢) isperiodic,
p() = p(t + To), and has a period of Tp = T /2, since its frequency
istwice that of voltage or current. We also observe that p(¢) is positive
for some part of each cycle and negative for the rest of the cycle. When
p(¢t) ispositive, power is absorbed by the circuit. When p(¢) is negative,
power is absorbed by the source; that is, power is transferred from the
circuit to the source. This is possible because of the storage elements
(capacitors and inductors) in the circuit.

p(t)

Y W

1
2

Vinlm cos(6, — 6;)

| >

T t

Figure |12 The instantaneous power p(r) entering a circuiit.

Theinstantaneouspower changeswithtimeandisthereforedifficult
to measure. The average power is more convenient to measure. In fact,
the wattmeter, the instrument for measuring power, responds to average
power.

t The average power is the average of the instantaneous power over one period.

Thus, the average power is given by

1 T
P = —f p(t)dt (11.6)
T Jo

Although Eq. (11.6) shows the averaging done over T', we would get the
sameresult if we performed the integration over the actual period of p(¢)
whichisTy = T/2.

Substituting p(¢) in Eq. (11.5) into Eq. (11.6) gives

P—1/T1VI cos(0, — 6;) dt
—T02mm v L

171
+ = _VmIm COS(ZCUI + ev + ei)dt
T Jo 2
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—1VI cos(0 9)1/Tdt
_2 mtm v lT O

1 1,7
+ =Vl = / cos(2wt + 6, + 6;) dt (11.7)
2 T Jo

The first integrand is constant, and the average of a constant is the same
constant. Thesecond integrand isasinusoid. Weknow that the average of
asinusoid over itsperiodiszero becausetheareaunder the sinusoid during
apositive half-cycleis canceled by the areaunder it during the following

negative half-cycle. Thus, the second termin Eq. (11.7) vanishes and the
average power becomes

1
P = EV'” I,, cos(6, — 6;) (11.8)

Since cos(8, — 6;) = cos(6; — 6,), what isimportant is the difference in
the phases of the voltage and current.

Note that p(¢) is time-varying while P does not depend on time.
To find the instantaneous power, we must necessarily have v(¢) and i (¢)
in the time domain. But we can find the average power when voltage
and current are expressed in the time domain, asin Eq. (11.2), or when
they are expressed in the frequency domain. The phasor forms of v(¢)
andi(t) inEq. (11.2) areV = V,, /6, and | = I,, /6;, respectively. P is
calculated using Eq. (11.8) or using phasorsV and |. To use phasors, we
notice that

1 1

EVI* == EVmImi 91} _01'

1 .
= Evmlm [COS(QU - 91) + ] Sn(ev - 91)]

(11.9)

We recognize the real part of this expression as the average power P
according to Eq. (11.8). Thus,

1 1
P= > Re[VI*] = EV’"I’" cos(8, — 6;) (11.10)

Consider two special cases of Eg. (11.10). When 6, = 6;, the
voltage and current are in phase. Thisimplies a purely resistive circuit
or resistive load R, and

P= 1V I, = 112R = 1|I|2R 11.11

_2I11111_2m _2 ()

where [11> = | x I*. Equation (11.11) shows that a purely resistive

circuit absorbs power at al times. When 0, — 6; = 4+90°, we have a
purely reactive circuit, and

1
P = > Viul,, €0S90° = 0 (11.12)
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CHAPTER I1 AC Power Analysis

showing that apurely reactive circuit absorbs no average power. In sum-
mary,

A resistive load (R) absorbs power at all times, while a reactive load (L or C)
absorbs zero average power.

437
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Given that
v(t) = 120cos(377t +45°) V and i(t) = 10cos(377t —10°) A

find the instantaneous power and the average power absorbed by the
passive linear network of Fig. 11.1.

Solution:
The instantaneous power is given by

p = vi = 1200 cos(377t + 45°) cos(377t — 10°)
Applying the trigonometric identity
COSA COSB = % [cos(A + B) + cos(A — B)]
gives
p = 600[cos(754t + 35°) + c0s55°]
or
p(t) = 344.2 + 600 cos(754¢ + 35°) W

The average power is

1 1
P = EV'” I, cos(0, — 6;) = 5120(10) cog[45° — (—10%)]

= 600c0s55° = 344.2 W

which isthe constant part of p(r) above.

PRACTICE PROBLEMMNNN

Calculate the instantaneous power and average power absorbed by the
passive linear network of Fig. 11.1 if

v(r) = 80cos(10r + 20°) V and i(t) = 15sin(10r + 60°) A
Answer: 385.7 + 600 cos(20r — 10°) W, 385.7 W.

MII.Z

Calculate the average power absorbed by animpedanceZ = 30— j70 @
when avoltage V = 120 /0° is applied acrossit.
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438 PART 2 AC Circuits

Solution:
The current through the impedance is

\% 120,/0° 120 /0°
== = = = 1.576/66.8° A

Z 30-j70 7616/ 66.8°

The average power is

1 1
P = 5Vl COS(0, — 6) = 5(120)(1.576) cos(0 — 66.8) = 37.24 W

PRACTICE PROBLEMENEN

A current | = 10,/30° flows through an impedance Z = 20/ — 22° Q.
Find the average power delivered to the impedance.

Answer: 927.2W.

MII.3

. 40 For the circuit shownin Fig. 11.3, find the average power supplied by the
source and the average power absorbed by the resistor.

Solution:
The current | is given by

50 5,/30°
Figure |1.3 For Example 11.3. 4—j2 4472/ 2657
The average power supplied by the voltage sourceis

5/30°V = -j2Q

= 1.118 /56.57° A

P = %(5)(1.118) cos(30° — 56.57°) = 2.5W
The current through the resistor is
| =1z =1.118 /56.57° A
and the voltage acrossit is
Vi =4l =4.472 /56.57° V
The average power absorbed by the resistor is

1
P = S(4472)(1118) = 25W

which is the same as the average power supplied. Zero average power is
absorbed by the capacitor.

PRACTICE PROBLEMMNEE

3Q In the circuit of Fig. 11.4, calculate the average power absorbed by the
resistor and inductor. Find the average power supplied by the voltage
source.

Answer: 9.6 W,0W, 9.6 W.

8/45°V i1Q

Figure |14 For Practice Prob. 11.3.
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CHAPTER I1 AC Power Analysis 449

MII.IO

Determine the power factor of the entire circuit of Fig. 11.18 as seen by 6Q
the source. Calculate the average power delivered by the source.
Solution: 30,/0°V rms
The total impedanceis
. —j2x4 .
Z=6+4+4]|(—j2)=6+ - 68—j16=7/-1324Q
4-j2 Figure [1.18  For Example 11.10.

The power factor is
pf = cos(—13.24) = 0.9734 (leading)
since the impedance is capacitive. The rms value of the current is

V rms 30@

lrms = = =4.286 /13.24° A
Z  7/-1324

The average power supplied by the sourceis

or
P = I2..R = (4.286)%(6.8) = 125 W
where R istheresistive part of Z.

PRACTICE PROBLEMNEEEN

Calculate the power factor of the entire circuit of Fig. 11.19 as seen by 100 8Q
the source. What is the average power supplied by the source?
Answer: 0.936 Iagglng, 118 W. 40/0°V rms 40 -i6Q

1

Figure I1.19 For Practice Prob. 11.10.

1.6 COMPLEX POWER

Considerable effort has been expended over the years to express power
relations as simply as possible. Power engineers have coined the term
complex power, which they use to find the total effect of parallel loads.
Complex power isimportant in power analysisbecauseit containsall the
information pertaining to the power absorbed by a given load.

Consider the ac load in Fig. 11.20. Given the phasor form V =
Vin @ and | = I, /6; of voltage v(¢) and current i(¢), the complex
power S absorbed by the ac load is the product of the voltage and the Vv Load
complex conjugate of the current, or Z

s= v (11.40) 5—1

Electronic Testing Tutorials

i

2
assuming the passive sign convention (see Fig. 11.20). In terms of the Figure 1120 The
rms val ues, voltage and current
phasors associated
S= Vimsl s (11.41) with a load.
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When working with the rms values of currents
or voltages, we may drop the subscript rms if no
confusion will be caused by doing so.

PART 2 AC Circuits

where
Vims = ~= = Vi /. (1142
rms — ﬁ - rms, v .
and
|
lrms = 72 =1 rmsﬁ (11.43)
Thus we may write Eq. (11.41) as
S= Vrms[rms{ 0, —6;
(11.44)

= Vrms]rms COS(QU - 91‘) + ermsIrmsSin(Qv - 91‘)

This equation can also be obtained from Eq. (11.9). We notice from Eq.
(11.44) that the magnitude of the complex power is the apparent power;
hence, the complex power is measured in volt-amperes (VA). Also, we
notice that the angle of the complex power isthe power factor angle.

Thecomplex power may beexpressedintermsof thel oad impedance
Z. From Eq. (11.37), the load impedance Z may be written as

vV VvV Vi
_Vms _ Vmms iev —6 (11.45)

Z=—=
Thus, Vims = Zlms. Substituting thisinto Eq. (11.41) gives

I I rms Irms

2

Vv,
S=13Z= Z’TS (11.46)

SinceZ = R + j X, Eq. (11.46) becomes
S=I2(R+jX)=P+jQ (11.47)

where P and Q are the real and imaginary parts of the complex power;
that is,

P =ReS = I2R (11.48)
0=Im@®S = 12X (11.49)

P is the average or real power and it depends on the load's resistance
R. Q depends on the load’s reactance X and is called the reactive (or
quadrature) power.

Comparing Eq. (11.44) with Eqg. (11.47), we notice that

P = VimsIims COS(0, — 6;), Q = Vrms]rmssm(eu —6;) (1150)

The rea power P is the average power in watts delivered to a load; it
is the only useful power. It is the actual power dissipated by the load.
The reactive power Q is ameasure of the energy exchange between the
source and the reactive part of theload. The unit of Q isthe volt-ampere
reactive (VAR) todistinguishit fromthereal power, whoseunitisthewatt.
We know from Chapter 6 that energy storage elements neither dissipate
nor supply power, but exchange power back and forth with the rest of
the network. In the same way, the reactive power is being transferred
back and forth between the load and the source. It represents a lossless
interchange between the load and the source. Notice that:
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CHAPTER I1 AC Power Analysis
1. O = Ofor resistive loads (unity pf).
2. O < Ofor capacitive loads (leading pf).
3. Q > Ofor inductive loads (lagging pf).

Thus,

Complex power (in VA) is the product of the rms voltage phasor and the
complex conjugate of the rms current phasor. As a complex quantity, its
real part is real power P and its imaginary part is reactive power Q.

Introducing the complex power enables usto obtain thereal and reactive
powers directly from voltage and current phasors.

1
Complex Power =S=P + jQ = EVI*

= Vrmslrms{ 0, — 6;
Apparent Power = S = |S| = Vimslims = v P2 + 02
Real Power = P = Re(S) = S cos(0, — 6;)
Reactive Power = Q = Im(S) = Ssin(6, — 6;)

(11.51)

P
Power Factor = 5= cos(f, — 6;)

This shows how the complex power contains all the relevant power in-
formation in a given load.

It is a standard practice to represent S, P, and Q in the form of
atriangle, known as the power triangle, shown in Fig. 11.21(a). This
is similar to the impedance triangle showing the relationship between
Z, R, and X, illustrated in Fig. 11.21(b). The power triangle has four
items—the apparent/complex power, real power, reactive power, and the
power factor angle. Given two of these items, the other two can easily
be obtained from the triangle. AsshowninFig. 11.22, when Sliesin the
first quadrant, we have an inductive load and a lagging pf. When Slies
in the fourth quadrant, the load is capacitive and the pf is leading. It is
also possiblefor the complex power to liein the second or third quadrant.
This requires that the load impedance have a negative resistance, which
is possible with active circuits.

s Q 1Z| X
N\ AV
P R
@ (b)
Figure 1.2 (2) Power triangle,

(b) impedance triangle.
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S contains all power information of a load. The
real part of § is the real power P; its imaginary
part is the reactive power (; its magnitude is the
apparent power §; and the cosine of its phase
angle s the power factor pf.

Im A
{
s +Q (lagging pf)
6,-6;
/0\, -0, P Re
S ~Q (lesding pf)
Figure [1.22 Power triangle.
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PRACTICE PROBLEMHENE

The voltage across a load is v(r) = 60cos(wt — 10°) V and the cur-
rent through the element in the direction of the voltage drop isi(r) =
1.5cos(wt + 50°) A. Find: (a) the complex and apparent powers, (b) the
real and reactive powers, and (c) the power factor and theload impedance.
Solution:
(a) For the rms values of the voltage and current, we write
60 15

Vrms=72£ _100, Irms=72£ +500

The complex power is
15

60
S= Ve = (72 /- 1o<>> (72 - 500> =45/ - 60° VA

The apparent power is

S =S| =45VA

(b) We can express the complex power in rectangular form as
S=45,/— 60" = 45[cos(—60") + j sin(—60")] = 22.5 — ;38.97
SinceS= P + jQ, thereal power is
P=225W

while the reactive power is

Q = —38.97 VAR
(c) The power factor is

pf = cos(—60°) = 0.5 (leading)
Itisleading, because the reactive power is negative. Theload impedance
is
Z=¥=u=4o —60° Q
I 15/4 50

which is a capacitive impedance.

For aload, Vims = 110,/85° V, I;ms = 0.4 /15° A. Determine: (a) the
complex and apparent powers, (b) the real and reactive powers, and (c)
the power factor and the load impedance.

Answer: (a) 44/70° VA, 44 VA, (b) 15.05W, 41.35 VAR,
(c) 0.342 lagging, 94.06 + j258.4 .

mﬂu.u
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A load Z draws 12 kVA at a power factor of 0.856 lagging from a 120-V
rms sinusoidal source. Calculate: (a) the average and reactive powers
delivered to the load, (b) the peak current, and (c) the load impedance.
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CHAPTER I1 AC Power Analysis 453

Solution:

(a) Given that pf = cosé = 0.856, we obtain the power angle as 6 =
cos10.856 = 31.13°. If the apparent power is S = 12,000 VA, then the
average or real power is

P = §cos6 = 12,000 x 0.856 = 10.272 kW
while the reactive power is
0 = Ssind = 12,000 x 0.517 = 6.204 kVA
(b) Since the pf islagging, the complex power is
S=P+ ;0 =10272+ j6.204 KVA
From S = Vsl . We obtain
o S _ 10,272+ j6204
Vims 120,/0°
Thus | ;ms = 100/ — 31.13° and the peak current is

=85.6+ j51.7A =100/31.13° A

Ly = V2Iims = V/2(100) = 141.4 A
(c) The load impedance
Vims 120 /0°

Z= = =12/3113 Q
lms 100/ — 31.13°

which is an inductive impedance.

PRACTICE PROBLEMENREEN

A sinusoidal source supplies 10 kVA reactive power to load Z =
250/ — 75° Q. Determine: (a) the power factor, (b) the apparent power
delivered to the load, and (c) the peak voltage.

Answer: (@) 0.2588 leading, (b) —10.35 kVAR, (c) 2.275 kV.

fI1.7  CONSERVATION OF AC POWER

The principle of conservation of power appliesto ac circuits aswell asto Infact, we already saw in Examples 113and |1 4

dc circuits (see Section 1.5). that average power is conserved in ac circuits.
To see this, consider the circuit in Fig. 11.23(a), where two load

impedances Z; and Z, are connected in parallel across an ac source V.

KCL gives

Il =114+1>2 (11.52)

The complex power supplied by the sourceis

where S; and S, denote the complex powers delivered to loads Z; and
Z,, respectively.
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CHAPTER 12 Three-Phase Circuits 479

amount of wirerequired for athree-phase systemislessthan that required
for an equivalent single-phase system.

We begin with adiscussion of balanced three-phase voltages. Then
we analyze each of the four possible configurations of balanced three-
phase systems. We also discuss the analysis of unbalanced three-phase
systems. Welearn how to use PSpice for Windows to analyze a balanced
or unbalanced three-phase system. Finally, we apply the concepts devel-
oped in this chapter to three-phase power measurement and residential
electrical wiring.

122 BALANCED THREE-PHASE VOLTAGES

Three-phase voltages are often produced with a three-phase ac generator
(or aternator) whose cross-sectional view isshowninFig. 12.4. Thegen-
erator basically consistsof arotating magnet (called therotor) surrounded
by a stationary winding (called the stator). Three separate windings or
coilswith terminals a-a’, b-b’, and c-¢” are physically placed 120° apart
around the stator. Terminals a and a’, for example, stand for one of the
ends of coilsgoing into and the other end coming out of the page. Asthe
rotor rotates, its magnetic field “cuts’ the flux from the three coils and
induces voltages in the coils. Because the coils are placed 120° apart,
the induced voltages in the coils are equal in magnitude but out of phase
by 120° (Fig. 12.5). Since each coil can be regarded as a single-phase
generator by itself, the three-phase generator can supply power to both
single-phase and three-phase loads.

ao

s /
Three- /‘ mA v
phase b o \\
output
120 w
C o— . .
\/ ‘~.¢"

Figure 125 The generated voltages are 120°
apart from each other.

no I

Figure 124 A three-phase generator.

A typical three-phase system consists of three voltage sources con-
nected to loads by three or four wires (or transmission lines). (Three-
phase current sources are very scarce.) A three-phase system is equiv-
alent to three single-phase circuits. The voltage sources can be either
wye-connected as shown in Fig. 12.6(a) or delta-connected as in Fig.
12.6(b).

L et us consider thewye-connected voltagesin Fig. 12.6(a) for now.
The voltages V,,,, Vp,, and V., are respectively between lines a, b, and
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(b)

Figure 2.7 Phase sequences:
(a) abc or positive sequence,
(b) acb or negative sequence.

As a common tradition in power systems, volt-
age and current in this chapter are in rms values
unless otherwise stated.

PART 2 AC Circuits

a
Vca I t Vab
an b
O ©
Vbc
o C

(b)

Figure 12.6 Three-phase voltage sources: (a) Y-connected source,
(b) A-connected source.

¢, and the neutral linen. These voltages are called phase voltages. If the
voltage sources have the same amplitude and frequency « and are out of
phase with each other by 120°, the voltages are said to be balanced. This
implies that

Van + Vi +Ve =0 (12.1)
|Van| = |Vbn| = |Vcn| (122
Thus,
B - |
Balanced phase voltages are equal in magnitude and are out
of phase with each other by 120°.

Sincethethree-phasevoltagesare 120° out of phasewith each other,
there are two possible combinations. One possibility is shown in Fig.
12.7(a) and expressed mathematically as

Van =V, /0°
Vi =V, / —120° (12.3)
Vcn - Vp — 240° = V,; =+ 120°

where V, isthe effective or rmsvalue. Thisisknown asthe abc sequence
or positive sequence. In this phase sequence, V,, leads Vy,,, which in
turn leads V,,. This sequence is produced when the rotor in Fig. 12.4
rotates counterclockwise. The other possibility is shown in Fig. 12.7(b)
and is given by

Vo =V, /0

Vo =V, / —120° (12.4)

Vin =V, /= 240° =V, /+ 120°

This is called the acb sequence or negative sequence. For this phase
sequence, V,, leads V., which in turn leads V,,,. The acb sequenceis
produced when the rotor in Fig. 12.4 rotates in the clockwise direction.
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It is easy to show that the voltages in Egs. (12.3) or (12.4) satisfy Egs.
(12.1) and (12.2). For example, from Eqg. (12.3),

Van + Vbn + Vcn = pﬁ + Vp — 120° + Vp + 120°
=V,(1.0-05—- 0.866 — 0.5+ j0.866) (125)

=0
The phase sequence is the time order in which the voltages pass through The phase sequence may also be regarded as the
their respective maximum values. order in which the phase voltages reach their

peak (or maximum) values with respect to time.

The phase sequence is determined by the order in which the phasors pass
through a fixed point in the phase diagram. Reminder: As time increases, each phasor (or

InFig. 12.7(a), asthe phasors rotate in the countercl ockwise direc- sinor) rotates at an angular velocity .
tion with frequency w, they passthrough the horizontal axisin asequence
abcabca . . .. Thus, the sequenceisabc or bea or cab. Similarly, for the
phasorsin Fig. 12.7(b), as they rotate in the counterclockwise direction,
they pass the horizontal axisin a sequence acbacba . ... This describes
the ach sequence. The phase sequenceisimportant in three-phase power
distribution. It determines the direction of the rotation of a motor con-
nected to the power source, for example.

Like the generator connections, a three-phase load can be either
wye-connected or delta-connected, depending on the end application.
Figure 12.8(a) shows a wye-connected load, and Fig. 12.8(b) shows a @
delta-connected load. The neutra line in Fig. 12.8(a) may or may not

be there, depending on whether the system is four- or three-wire. (And, a
of course, a neutral connection is topologically impossible for a delta Z. Z,
connection.) A wye- or delta-connected load is said to be unbalanced if
the phase impedances are not equal in magnitude or phase. bo —
Zp
B - , |
A balanced load is one in which the phase impedances co
are equal in magnitude and in phase. (b)
Figure 2.8 Two possible three-
For a balanced wye-connected load, phase load configurations:
(a) a Y-connected load,
Z1=2,=23=12Zy (12.6) (b) a A-connected load

whereZy istheloadimpedance per phase. For abalanced delta-connected
load, Reminder: A Y-connected load consists of three
impedances connected to a neutral node, while a

Zo=2Zpy=2Z.=2Zx (12.7) . .
A-connected load consists of three impedances
where Z » is the load impedance per phase in this case. We recall from connected around a loop. The load is balanced
Eq. (9.69) that when the three impedances are equal in either
1 aase.
Zpn =32y or Zy = :—))ZA (12.8)

so we know that a wye-connected load can be transformed into a delta-
connected load, or vice versa, using Eq. (12.8).

Since both the three-phase source and the three-phase load can be
either wye- or delta-connected, we have four possible connections:
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e Y-Y connection (i.e., Y-connected source with a Y-connected
load).

e Y-A connection.
e A-A connection.
e A-Y connection.

In subsequent sections, we will consider each of these possible configu-
rations.

It is appropriate to mention here that a balanced delta-connected
load is more common than a balanced wye-connected load. Thisis due
to the ease with which loads may be added or removed from each phase
of a delta-connected load. This is very difficult with a wye-connected
load because the neutral may not be accessible. On the other hand, delta-
connected sources are not common in practice because of the circulating
current that will result in the delta-mesh if the three-phase voltages are
slightly unbalanced.

PRACTICE PROBLEMENE

Determine the phase sequence of the set of voltages
Van = 200cos(wt + 10°)
vy, = 200 cos(wt — 230°), Ve = 200 cos(wt — 110°)
Solution:
The voltages can be expressed in phasor form as
Vi =200/10°, V4, =200/-230°,  V, =200/-110°

We noticethat V,, leads V., by 120° and V, inturn leads V,,, by 120°.
Hence, we have an acb sequence.

Giventhat V,, = 110 /30°, find V,, and V,, assuming a positive (abc)
sequence.

Answer: 110,150°, 110/ — 90°.

123 BALANCED WYE-WYE CONNECTION

We begin withthe Y-Y system, because any balanced three-phase system
can be reduced to an equivalent Y-Y system. Therefore, analysis of this
system should be regarded as the key to solving all balanced three-phase
systems.

A balanced Y-Y system is a three-phase system with a balanced Y-connected
source and a balanced Y-connected load.

Consider the balanced four-wire Y-Y system of Fig. 12.9, where
a Y-connected load is connected to a Y-connected source. We assume a
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balanced |oad so that |oad impedancesareequal. Althoughtheimpedance
Zy isthetota load impedance per phase, it may also be regarded as the
sum of the sourceimpedance Z,, lineimpedance Z,, and load impedance
Z; for each phase, sincetheseimpedancesarein series. Asillustrated in
Fig. 12.9, Z, denotestheinterna impedance of the phase winding of the
generator; Z, is the impedance of the line joining a phase of the source
with a phase of theload; Z; isthe impedance of each phase of the load,;
and Z,, istheimpedance of the neutral line. Thus, in general

Zy=2Z,+7Z,+Z; (12.9)

Z, and Z, are often very small compared with Z,;, so one can assume
that Zy = Z, if no source or line impedance is given. In any event,
by lumping the impedances together, the Y-Y systemin Fig. 12.9 can be
simplified to that shownin Fig. 12.10.

B Figure [2.10  Baanced Y-Y connection.

Figure 2.9 A balanced Y-Y system, showing the
source, line, and load impedances.

Assuming the positive sequence, the phase voltages (or line-to-
neutral voltages) are

Vg =V, /0°

Vin=V,/=120°, V. =V,/+120°

The line-to-line voltages or simply line voltages V5, V., and V., are
related to the phase voltages. For example,

Var =Van +Vaup =Vau — Vi = Vpﬁ - Vp —120°

(12.10)

1 3 (12.118)
=V, <1+ >+ ]%) = V3V, ,/30°
Similarly, we can obtain
Vie = Vi —Ven =3V, /— 90 (12.11b)
Vo=V —Van = \/§fo — 210° (12.11c)
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Thus, the magnitude of the line voltages V; is +/3 times the magnitude
of the phase voltages V,, or

VL =3V, (12.12)
where
Vp = IVanl = IViul = [Venl (12.13)
and
Ve = Vapl = Vel = Vel (12.14)

Also the line voltages lead their corresponding phase voltages by 30°.
- Vap=Van + Vo Figure 12.11(a) illustrates this. Figure 12.11(a) also shows how to deter-
' mine V,;, from the phase voltages, while Fig. 12.11(b) shows the same
for the three line voltages. Notice that V,, leads V. by 120°, and V.
leadsV ., by 120°, so that the line voltages sum up to zero as do the phase

voltages.
Applying KVL to each phasein Fig. 12.10, we obtain the line cur-
rents as
Vzm th Van _ 1200

@ l, = , l, = — —:Iaf—120°
Zy "7z, Zy

Voo Van/ —240° (219
|C=Z—‘Y"=Z—Y=|ag—24oo
We can readily infer that the line currents add up to zero,
l,+1,+1.=0 (12.16)
so that

l,=—(,+1,+1,)=0 (12.173)
Vi, or

(b) Voyn =2,1,=0 (12.17b)

, that is, the voltage across the neutral wire is zero. The neutral line can
Figure I2.11  Phasor diagrams illustrating thus be removed without affecting the system. In fact, in long distance
the relationship between line voltages and .. . . .
phase voltages. power transmission, conductors in multiples of three are used with the

earth itself acting as the neutral conductor. Power systems designed in
thisway are well grounded at all critical pointsto ensure safety.

While the line current is the current in each line, the phase current
isthe current in each phase of the source or load. Inthe Y-Y system, the
line current isthe same asthe phase current. Wewill use single subscripts
for line currents because it is natural and conventional to assumethat line
currents flow from the source to the load.

a la A An alternative way of analyzing abalanced Y-Y systemisto do so
ona“per phase’ basis. Welook at one phase, say phasea, and analyzethe
Vi, z, si'nglephasie equivalent circuit in Fig. 12.12. The single-phase analysis
yieldstheline current |, as
n N V
. l, = == (12.18)
F|gure 212 A single-phase Zy

equivaent circuit.
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From I, we use the phase sequence to obtain other line currents. Thus,
as long as the system is balanced, we need only analyze one phase. We
may do this even if the neutral line is absent, asin the three-wire system.

mﬂm.z

Calculate the line currents in the three-wire Y-Y system of Fig. 12.13.

5-j2Q A

[ S

I

j|10+j8§2

110,/-240° V

g 10+j8Q
¢ I
10+j8Q
5-120 u 0+j8
| |

[ S

Figure [213  Three-wire Y-Y system; for Example 12.2.

Solution:

The three-phase circuit in Fig. 12.13 is balanced; we may replace it with
its single-phase equivalent circuit such as in Fig. 12.12. We obtain |,
from the single-phase analysis as

I _ V[l}’l
a — ZY
whereZy = (5— j2) + (10+ j8) = 15+ j6 = 16.155,/21.8°. Hence,
110/0°
= =6.81/-21.8°A

ly= ——
16.155,/21.8°

Since the source voltages in Fig. 12.13 are in positive sequence and the
line currents are a'so in positive sequence,

I, =1,/ —120°=6.81/ — 141.8° A

l.=1,/—240°=6.81/ — 261.8° A = 6.81 /98.2° A

PRACTICE PROBLEMENES

A Y-connected balanced three-phase generator with an impedance of
0.4+ j0.3 2 per phaseis connected to a Y-connected balanced load with
an impedance of 24 + ;19 Q per phase. The line joining the generator
and the load has an impedance of 0.6 + j0.7 Q per phase. Assuming
a positive sequence for the source voltages and that VV,,, = 120 /30° V,
find: (&) theline voltages, (b) the line currents.
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Answer: (&) 207.85,/60° V, 207.85/ — 60° V, 207.85/ — 180° V,
(b) 3.75/ — 8.66° A, 3.75/ — 128.66° A, 3.75 / — 248.66° A.

This is perhaps the most practical three-phase
system, as the three-phase sources are usually Y-
connected while the three-phase loads are usu-
ally A-connected.

JL A balanced Y-A system consists of a balanced Y-connected source

124 BALANCED WYE-DELTA CONNECTION

feeding a balanced A-connected load.

The balanced Y-delta system is shown in Fig. 12.14, where the
sourceiswye-connected and theload is A-connected. Thereis, of course,
no neutral connection from source to load for this case. Assuming the
positive sequence, the phase voltages are again

Vi =V, /0°
(12.19)
Vi, =V, / = 120°, Ve =V, /+120°
As shown in Section 12.3, the line voltages are
Vab = \/évpf 30° = VABs Vbc = \/évp{ —90° = VBC
(12.20)

Veo =+/3V,/=210° =V,

showing that the line voltages are equal to the voltages across the load
impedances for this system configuration. From these voltages, we can
obtain the phase currents as

A
lap = 5—, lpc = ——, lca = N (12.21)

These currents have the same magnitude but are out of phase with each
other by 120°.

Figure [2.14  Baanced Y-A connection.
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Another way to get these phase currentsis to apply KVL. For ex-
ample, applying KVL around loop a A Bbna gives

~Van +Zalap +Vp, =0
or
Var =Ven  Va  Vap
Zn Za Za
whichisthesameasEq. (12.21). Thisisthe more general way of finding
the phase currents.

Theline currents are obtained from the phase currents by applying
KCL at nodes A, B, and C. Thus,

lsp = (12.22)

la =1lag —lca, Iy =lgc — las, le =lca—lpc (1223

Sincelca = 1ap/ — 240°,
Ia:IAB_ICAZIAB(l_lﬂ)
=143(1+ 05— j0.866) = I 43v/3/ — 30°

showing that the magnitude 7, of theline current is /3 times the magni-
tude 7, of the phase current, or

(12.24)

I, =3I, (12.25)
where
I = [l = lp] = [Ic] (12.26)
and
I, = lagl = lgcl = llcal (12.27)

Also, the line currents lag the corresponding phase currents by 30°, as-
suming the positive sequence. Figure 12.15 isaphasor diagram illustrat-
ing the relationship between the phase and line currents.

An aternative way of analyzing the Y-A circuit isto transform the
A-connected load to an equivalent Y-connected load. Using the A-Y
transformation formulain Eq. (9.69),

Z
Zy = ?A (12.28)

After this transformation, we now have a Y-Y system asin Fig. 12.10.
Thethree-phase Y-A systemin Fig. 12.14 can be replaced by the single-
phase equivalent circuit in Fig. 12.16. This alows us to calculate only
the line currents. The phase currents are obtained using Eq. (12.25) and
utilizing the fact that each of the phase currents leads the corresponding
line current by 30°.

487

Al
lcaX 30°
las
30°
30° la
Ib lec
Figure 2,15 Phasor diagram

illustrating the relationship between
phase and line currents.

Figure 12.16 A single-phase equivalent
circuit of a balanced Y-A circuit.

M|2.3

A balanced abc-sequence Y-connected source with V,,, = 100 /10° V
is connected to a A-connected balanced load (8 + j4) 2 per phase. Cal-
culate the phase and line currents.
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Solution:
This can be solved in two ways.

The load impedance is
Zy =8+ j4=28944/26.57° Q
If the phase voltage V,,, = 100 @ then the line voltage is
Vs = Vanv/3/30° = 100v/3,/10° + 30° = V43
or
Vap =173.2/40° V

The phase currents are
Vg 173.2 /40°

Zx  8.944/2657°
lsc =1 a5/ — 120° = 19.36,/ — 106.57° A

lca =lap/ +120° = 19.36,/133.43° A
Theline currents are
le = lapv/3/ — 30° = /3(19.36) /13.43° — 30°
= 3353/ —16.57° A
l, =1,/ —120° = 33.53/ — 136.57° A
lc=1,/+120° = 33.53 /103.43° A

METHOD B} Alternatively, using single-phase analysis,

- Van 100 /10°
‘7 Za/3 2981 ,/2657°

asabove. Other line currents are obtained using the abc phase sequence.

= 19.36,/13.43° A

lap =

=3354,/—16.57° A

PRACTICE PROBLEMMBNEE

One line voltage of a baanced Y-connected source is Vap =
180,/ — 20° V. If the source is connected to a A-connected load of

20,/40° ©, find the phase and line currents. Assume the abc sequence.
Answer: 9/—60°, 9/ —180°, 9,/60°, 15.59 / — 90°,
15.59 / — 210°,15.59 /30° A.

12.5 BALANCED DELTA-DELTA CONNECTION

A balanced A-A system is one in which both the balanced source
and balanced load are A-connected.
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The source as well as the load may be delta-connected as shown
in Fig. 12.17. Our goal is to obtain the phase and line currents as usual.
Assuming a positive sequence, the phase voltages for a delta-connected

source are
Vap =V, /O°

Vie=V,/=120°,  Ve=V,/+120°

The line voltages are the same as the phase voltages. From Fig. 12.17,
assuming there is no line impedances, the phase voltages of the delta-
connected source are equal to the voltages across the impedances; that
is,

(12.29)

Vab = Vas, Ve = Ve, Ve =Vea (12.30)

Hence, the phase currents are

T Vag Vb o Ve Vi
AB ZA ZA ’ BC ZA ZA
(12.31)
| _ VCA _ Vca
A=z o=

Since the load is delta-connected just as in the previous section, some
of the formulas derived there apply here. The line currents are obtained
from the phase currents by applying KCL at nodes A, B, and C, aswe
did in the previous section:

lo =lap —lca, I, =1pc —las, le =lca—lpc (1232

Also, asshowninthelast section, each line current lagsthe corresponding
phase current by 30°; the magnitude I, of the line current is +/3 times
the magnitude /,, of the phase current,

I, =3I, (12.33)

Vea (5 B Vap
lp
Yy ’
[ aH
N b
Vbc I ¢

Figure 1217 A balanced A-A connection.

An alternative way of analyzing the A-A circuit isto convert both
the source and the load to their Y equivalents. We already know that
Zy = Z /3. To convert a A-connected source to a Y-connected source,
see the next section.
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A balanced A-connected load having an impedance 20 — j15 Q is con-
nected to a A-connected, positive-sequence generator having V., =
330,/0° V. Calculate the phase currents of the load and the line currents,

Solution:
The load impedance per phaseis

Zy=20—j15=25/—36.87° Q
The phase currents are
Vg 330,/0°
Zs 25/ 3687
lpc =lap/—120° =132/ - 8313 A
lca =lap/ + 120° = 13.2 /156.87° A

=13.2/36.87° A

IAB=

For a delta load, the line current always lags the corresponding phase
current by 30° and has a magnitude /3 times that of the phase current.
Hence, the line currents are

l, = 143v/3/—30° = (13.2/36.87°)(v/3/ — 30°)
= 22.86,/6.87° A
I, =1,/ —120° =22.86/ — 113.13° A

Il =1,/ +120° = 22.86 /126.87° A

PRACTICE PROBLEMENEE

A positive-sequence, balanced A-connected source supplies a balanced
A-connected load. If the impedance per phase of theloadis 18 + j12 Q
andl, = 225{ 35° A, findl 45 and V 45.

Answer: 13/65° A, 281.2 /98.69° V.

12,6 BALANCED DELTA-WYE CONNECTION

A balanced A-Y system consists of a balanced A-connected
source feeding a balanced Y-connected load.

Consider the A-Y circuit in Fig. 12.18. Again, assuming the abc
sequence, the phase voltages of a delta-connected source are

Vi = Vp 0, Ve = Vp —120°

Voo =V, /+120°

These are also the line voltages as well as the phase voltages.

(12.34)
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a —_— A
ZY
Vea (3 ) Va N
Zy Zy
Ip
) >
c an
5/ b 5 c
Voc I
—_—

Figure 2.18 A balanced A-Y connection.

We can obtain the line currentsin many ways. One way isto apply
KVL toloop aAN Bba in Fig. 12.18, writing

~Vap +Zyla —Zyly, =0

or
Zy(ly,—1p) =V =V, /0°
Thus,
v,/o
l,— 1, = - (12.35)

But 1, lags 1, by 120°, since we assumed the abc sequence; that is,
I, =1,/ —120°. Hence,

la =1, =1,1-1/-120°)

(12.36)
=1, <1+ ; +j%_3> =1,V/3/30°
Substituting Eg. (12.36) into Eq. (12.35) gives
V,/v3/ —30°
= % (12.37)

l, = Z,
From this, we obtain the other line currents I, and |, using the positive
phase sequence, i.e., I, =1,/ —120°, I. = 1,/ + 120°. The phase
currents are equal to the line currents.

Another way to obtain the line currents is to replace the delta-
connected source with its equival ent wye-connected source, as shown in
Fig. 12.19. In Section 12.3, we found that the line-to-line voltages of
awye-connected source lead their corresponding phase voltages by 30°.
Therefore, we obtain each phase voltage of the equival ent wye-connected
source by dividing the corresponding line voltage of the delta-connected
source by /3 and shifting its phase by —30°. Thus, the equivalent wye-
connected source has the phase voltages

Vv
Vo = % /—30°
3
f (12.38)
Vo, = ﬁ — 150°, Vo = ﬁ + 90° Figure [2.19 T_ransforming a A-connected
J’:’, ﬁ source to an equivalent Y-connected source.
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If the delta-connected source has source impedance Z; per phase, the
equivalent wye-connected source will have a source impedance of Z,/3
per phase, according to Eq. (9.69).

Once the sourceis transformed to wye, the circuit becomes awye-
wye system. Therefore, we can use the equivalent single-phase circuit

_la shown in Fig. 12.20, from which the line current for phase a is
\, /-30° — 30
P = é} |:| Zy l, = Vo/N3/ =30 V3/ =30 (12.39)
Zy

which isthe same as Eq. (12.37).

Alternatively, we may transform the wye-connected load to an
equivalent delta-connected load. This results in a delta-delta system,
which can be analyzed asin Section 12.5. Note that

\%
Vay = 1,2y = \/—% / —30° (12.40)
Vey = Van/ —120°, Ven =Van /+120°

As stated earlier, the delta-connected load is more desirable than
thewye-connected load. Itiseasier to alter theloadsin any one phase of
the delta-connected loads, as the individual |oads are connected directly
across the lines. However, the delta-connected source is hardly used in
practice, because any slight imbalance in the phase voltages will resultin
unwanted circulating currents.

Table 12.1 presents a summary of the formulas for phase currents
and voltages and line currents and voltages for the four connections.
Students are advised not to memorize the formulas but to understand
how they are derived. The formulas can always be obtained by directly
applying KCL and KVL to the appropriate three-phase circuits.

Figure 1220 The single-phase equivalent
circuit.

TABLE 121 Summary of phase and line voltages/currents for

balanced three-phase systemst.
Connection  Phase voltages/currents Line voltages/currents
Y-Y Vi =V, /0 Vo =3V, /30°

Vi, =V, / —120° Ve =V / — 120°
Ve =V, / +120° Veo =V / +120°
Sameaslinecurrents |, =V,,/Zy

Iy =1,/ —120°
l.=1,/ +120°
Y-A le = Vp 0° Vub = VAB = \/évpf 30°

Vi =V,/ =120V, =Vge =Vy/ —120°
Vo=V, /41200 Vo =Vea =V / +120°

lap =Vap/Za la = |AB\/§{ - 30
Isc =Vae/Za Iy =1,/ —120°
lca =Veca/Za l.=1,/ +120°

Lpositive or abc sequence is assumed.
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TABLE 121 (continued)

Connection  Phase voltages/currents  Line voltages/currents

A-A V=V, /0° Same as phase voltages
Vpe =V, / —120°
Ve =V, / +120°

lag =Var/Za l, =14pv/3/ = 30°
lgc = Vipe/Za ly =1,/ —120°
lca =Ve/Za le =1,/ +120°

A-Y V=V, /0 Same as phase voltages

Ve =V, / = 120°
Vee =V, / 4 120°

. v,/ —30°
Sameaslinecurrents |, = ——
V3zZy
I, =1,/ —120°
l.=1,/ +120°

493

£ X A P L I

A balanced Y-connected load with a phase resistance of 40 2 and areac-
tance of 25 Q is supplied by a balanced, positive sequence A-connected
source with a line voltage of 210 V. Calculate the phase currents. Use
V., asreference.

Solution:
Theload impedanceis

Zy =40+ j25=47.17/32° Q
and the source voltageis
Vg = 210/0° V
When the A-connected source is transformed to a Y-connected source,

Vab
Vo = /—=30°=1212/-30°V
V3

Theline currents are

v,, 121.2/-30
Z N 47.12 /32°
I, =1,/ —-1200=257/—-182° A

l.=1,/120° = 2.57,/58° A

=257/—-62° A

l, =

which are the same as the phase currents.
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5

In abalanced A-Y circuit, V,, = 240/15° and Zy = (124 j15) Q.
Cadlculate the line currents.
Answer: 7.21/—66.34°,7.21 / — 186.34°, 7.21 /53.66° A.

12.7 POWER IN A BALANCED SYSTEM

Let us now consider the power in a balanced three-phase system. We
begin by examining the instantaneous power absorbed by the load. This
requiresthat the analysis be done in the time domain. For a Y-connected
load, the phase voltages are

vay = V2V, cosat, vy = ~/2V, cos(wr — 120°)

(12.41)
vey = V2V, cos(wt + 120°)

where the factor +/2 is necessary because V,, has been defined asthe rms
value of the phase voltage. If Zy = Z ﬁ the phase currents lag behind

their corresponding phase voltages by 6. Thus,
is = V2I,c08(wt —0), iy =+/2I,c08(wt — 6 —120°) 122
ic = /21, cos(wt — 6 + 120°) '

where I, is the rms value of the phase current. The total instantaneous
power in the load is the sum of the instantaneous powers in the three
phases; that is,

P = Pa+ pp + Pec = Vania + VpNip + Venic
= 2V, I,[coswt cos(wt — )

(12.43)
+ cos(wt — 120°) cos(wt — 6 — 120°)
+ cos(wt + 120°) cos(wt — 6 + 120°)]
Applying the trigonometric identity
1
COSA COSB = > [cos(A + B) + cosS(A — B)] (12.44)

gives
p = V,I,[3c0s6 + cos(2wt — 6) 4 cos(2wt — 6 — 240°)
+ cos(2wt — 6 + 240°)]
= V,1,[300s6 + cosa + cosa c0s240° + sina sin 240°
+ cosa c0s240° — sina sin240°] (12.45)
whereo = 2wt — 0

1
=V,l, [SCOSG + cosa + 2 (—§> COSot] =3V, 1, cosd

Thus the total instantaneous power in a balanced three-phase system is
constant—it does not changewith time astheinstantaneous power of each
phase does. This result is true whether the load is Y- or A-connected.
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This is one important reason for using a three-phase system to generate
and distribute power. We will look into another reason alittle later.

Since the total instantaneous power is independent of time, the
average power per phase P, for either the A-connected load or the Y-
connected load is p/3, or

P, =V,I,coso (12.46)
and the reactive power per phaseis
Qp =Vpl,sing (12.47)
The apparent power per phaseis
S, =V,lI, (12.48)
The complex power per phaseis
Sy =P, +jQp=V,l, (12.49)

whereV , and | , arethe phase voltage and phase current with magnitudes
V, and I, respectively. Thetotal average power isthe sum of theaverage
powers in the phases:

P=P,+ P,+ P. =3P, =3V,I,0080 = ~/3V,I; COSO  (1250)

For a Y-connected load, I;, = I, but V;, = Jﬁvp, whereas for a A-

connected load, I, = +/31, but V;, = V,,.. Thus, Eq. (12.50) applies for
both Y-connected and A-connected loads. Similarly, the total reactive
power is

Q =3V,I,sn0 =30, = V3V, I, snd (12.51)

and the total complex power is

V2
S$=3S,=3V,I} =37, = Z*” (1252)

p

whereZ, = Z, /0 istheload impedance per phase. (Z,, could be Zy or
ZA.) Alternatively, we may write Eq. (12.52) as

S=P+,j0=v3V.I./8 (12.53)

Remember that V,,, I,,, V., and I, are all rms values and thét 6 is the
angle of the load impedance or the angle between the phase voltage and
the phase current.

A second major advantage of three-phase systems for power dis-
tribution is that the three-phase system uses alesser amount of wire than
the single-phase system for the same line voltage V; and the same ab-
sorbed power P,. We will compare these cases and assume in both that
the wires are of the same materia (e.g., copper with resistivity p), of the
same length ¢, and that the loads are resistive (i.e., unity power factor).
For the two-wire single-phase system in Fig. 12.21(a), I, = P,/ V., SO
the power loss in the two wiresis

2 P
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R la
I —o—WW— 0
R —_— +
Three- - I A4 Three-
Single- R * phase O AAA > 5 phase
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— _
—O— M —————————
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Figure [2.21 Comparing the power loss in (a) a single-phase system, and (b) a three-phase system.

For thethree-wirethree-phasesysteminFig. 12.21(b), I; = [l.| = |l,| =
ll.| = Pp/+/3V; from Eq. (12.50). The power lossin the three wiresis

p2 p2

Pl =3(I))°R = 3R’3—VLL2 = R’V—% (12.55)

Equations(12.54) and (12.55) show that for the sametotal power delivered
P, and sameline voltage V.,

})|OSS _ 2_R

Pos R

(12.56)

But from Chapter 2, R = pf/nr? and R’ = pt/mr'?, wherer and r’ are
theradii of the wires. Thus,
Pioss 22

B = 2 (12.57)
|

If the same power lossis tolerated in both systems, then 2 = 22, The
ratio of material required is determined by the number of wires and their
volumes, so
Material for single-phase  2(zr?¢)  2r?
Material for three-phase ~ 3(wr'2¢)  3r72

) (12.59)
= —-(2) =1.333
3( )

sincer? = 2r"2. Equation (12.58) showsthat thesingle-phase system uses
33 percent more material than the three-phase system or that the three-
phase system uses only 75 percent of the material used in the equivalent
single-phase system. In other words, considerably lessmaterial isneeded
to deliver the same power with a three-phase system than is required for
asingle-phase system.

M|2.6

Refer to the circuit in Fig. 12.13 (in Example 12.2). Determine the total
average power, reactive power, and complex power at the source and at
the load.
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Solution:

It is sufficient to consider one phase, asthe system isbalanced. For phase
a1

V,=110,/0V ad 1,=681/-218A
Thus, at the source, the complex power supplied is
S, = -3V, I’ = 3(110,/0°)(6.81/21.8")
= —2247,/21.8° = —(2087 + j834.6) VA

The real or average power supplied is —2087 W and the reactive power
is—834.6 VAR.
At the load, the complex power absorbed is

S, =3/1,%2,
whereZ, = 10+ j8 = 12.81,/38.66° and |, = |, = 6.81/ — 21.8°.

Hence
S = 3(6.81)212.81{38.660 = 1782 /38.66
= (1392 + j1113) VA

Thereal power absorbed is 1391.7 W and the reactive power absorbed is
1113.3 VAR. Thedifference between the two compl ex powersisabsorbed
by the line impedance (5 — j2) Q2. To show that thisis the case, we find
the complex power absorbed by the line as

Sy = 3|1,1°Z; = 3(6.81)(5 — j2) = 695.6 — j278.3 VA

which isthe difference between S, and S; , that is, S, +S, + S, = 0, as
expected.

PRACTICE PROBLEMMNNFIN

For the Y-Y circuit in Practice Prob. 12.2, calculate the complex power
at the source and at the |oad.

Answer: (1054 + j843.3) VA, (1012 + j801.6) VA.

M|2.7

A three-phase motor can beregarded asabalanced Y-load. A three-phase
motor draws 5.6 kW when the line voltage is 220 V and the line current
is18.2 A. Determine the power factor of the motor.

Solution:
The apparent power is

S =+/3V, 1, = +/3(220)(18.2) = 6935.13 VA
Sincethe real power is

P = Scosf = 5600 W
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the power factor is

P 5600
pf =cosf = —

S 6935.13 08075

PRACTICE PROBLEMMNNFIN

Calculate theline current required for a 30-kW three-phase motor having
apower factor of 0.85 lagging if it is connected to a balanced source with
aline voltage of 440 V.

Answer: 50.94 A.

mﬂm.s

Two balanced |oads are connected to a 240-kV rms 60-Hz line, as shown
in Fig. 12.22(a). Load 1 draws 30 kW at a power factor of 0.6 lagging,
whileload 2 draws 45 kVAR at apower factor of 0.8 lagging. Assuming
the abc sequence, determine: (a) the complex, real, and reactive powers
absorbed by the combined load, (b) the line currents, and (c) the kVAR
rating of the three capacitors A-connected in parallel with the load that
will raise the power factor to 0.9 lagging and the capacitance of each

Balanced Balanced Capacitor.
load 1 load 2 Solution:
(a) Forload 1, giventhat P, = 30kW and cos6#; = 0.6, thensing; = 0.8.
@ Hence,
P 30 kW
- p= —— = —50KVA
T C C0s6q 0.6
% c T c and Q; = S1sinf; = 50(0.8) = 40 kVAR. Thus, the complex power
duetoload 1is
S =P+ j0O1 =30+ j40kVA (12.8.1)
For load 2, if 0, = 45 kVAR and cosf, = 0.8, thensing, = 0.6. We
Combined find
load
0> 45 kVA
Sy, = — = = 75kVA
2 siné, 0.6
() and P, = S, cos6, = 75(0.8) = 60 kW. Therefore the complex power
Figure [2.22  For Example 12.8: () The due toload 2is
original balanced loads, (b) the combined load S, =P, + jQ, =60+ j45 kVA (12.8.2)
with improved power factor.
From Egs. (12.8.1) and (12.8.2), the total complex power absorbed by
theload is

S=5+S,=90+ j85KVA = 123.8/43.36° kVA  (1283)

which has a power factor of cos43.36° = 0.727 lagging. Thereal power
isthen 90 kW, while the reactive power is 85 kVAR.
(b) Since S = +/3V, I, theline current is

I - S
- V3V,

(12.8.4)
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We apply thisto eachload, keeping in mind that for both loads, V, = 240
kV. For load 1,

50,000
~ /3240,000

Since the power factor islagging, theline current lags the line voltage by
01 = cos 10.6 = 53.13°. Thus,

ls1 =120.28/ — 53.13°

75,000
~ /3240,000
and the line current lags the line voltage by 6, = cos 0.8 = 36.87°.

Hence,
lo2 = 180.42/ — 36.87°
Thetotal line current is
lo =141+ 14,0 =120.28/ — 53.13° 4+ 180.42 / — 36.87°

= (72.168 — j96.224) + (144.336 — j108.252)
= 216.5— j204.472 = 297.8 / — 43.36° mA

Alternatively, we could obtain the current from the total complex
power using Eq. (12.8.4) as
123,800
b /3 240,000

L1 = 120.28 mA

For load 2,

I = 180.42 mA

= 297.82 mA

and

lo =297.82/ — 43.36° mA

which is the same as before. The other line currents, I, and | .., can be
obtained accordingtotheabc sequence(i.e., |, = 297.82 /—163.36° mA
and |, = 297.82,/76.64° mA).

(c) We can find the reactive power needed to bring the power factor to 0.9
lagging using Eq. (11.59),

QC = P(tangold - tan@new)

where P = 90 kW, 659 = 43.36°, and Opey = cOs10.9 = 25.84°.
Hence,

Q¢ = 90,000(tan 43.36° — tan 25.04°) = 41.4 kVAR

This reactive power is for the three capacitors. For each capacitor, the
rating Q. = 13.8 kVAR. From Eq. (11.60), the required capacitance is
_ Q¢
Ve
Since the capacitors are A-connected as shown in Fig. 12.22(b), Vims in
the above formula is the line-to-line or line voltage, which is 240 kV.
Thus,

B 13,800
" (2760)(240,000)2

= 635.5 pF
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